
API IS

A ccess Con trol System

dev elop ed b y

Marek Imialek, Eildert Gro enev eld

Mariensee, 07.09.2005

Con ten ts

1 The A ccess Con trol 3

1.1 In tro duction . 3

1.2 Requiremen ts for the access con trol system . 3

1.2.1 General requiremen ts . 3

1.2.2 Soft w are requiremen ts . 3

1.2.3 Database requiremen ts . 4

1.3 The basic foundations - setting API IS soft w are . 4

1.3.1 System arc hitecture . 4

1.3.2 API IS core . 4

1.3.3 API IS pro jects . 5

1.4 De�ning users . 5

1.4.1 Registering user on the op erating system lev el . 6

1.4.2 Registering user on the API IS system lev el . 6

1.5 Gran ting access righ ts to the user . 7

1.6 A ccess righ ts for the system tasks . 8

1.6.1 De�nitions of the access righ ts . 8

1.6.2 Chec king of the access righ ts - logging to the system 9

1.7 A ccess righ ts for the database and the con ten t of the database 10

1.7.1 Metho d for the insert, up date and delete statemen ts 10

1.7.1.1 De�nition of the access righ ts . 10

1.7.1.2 Chec king of the access righ ts . 13

1.7.2 Metho d for the public select statemen ts . 15

1.7.2.1 De�nition of the access righ ts: . 15

1.7.2.2 Creating views: . 15

1.8 Grouping access righ ts . 17

1.8.1 Grouping roles . 18

1.8.2 Grouping groups . 18

1.9 Sp ecifying constrain ts for the grouping . 19

1.10 F urther dev eloping . 20

1.10.1 Chec king the login time and the curren t status of the users 20

1.11 Remarks . 20

1.12 Bibliograph y . 20

1.13 ERD diagrams . 20

2

Chapter 1

The A ccess Con trol

1.1 In tro duction

The main tasks of the securit y system will b e to ensure prop er access for the users and protect the

structure and the con ten t of an y API IS databases from the unauthorised actions.

API IS needs guaran tees that the p ersons connecting to the system are really the ones they claim to

b e and also has to con trol the actions eac h p erson is trying to p erform.

1.2 Requiremen ts for the access con trol system

The requiremen ts for the API IS securit y system are split on three parts:

� general requiremen ts

� soft w are requiremen ts

� database requiremen ts

1.2.1 General requiremen ts

� access to the API IS System is con trolled b y the login and the passw ord

� access righ ts con trol is based on the RBA C

1

(shortly sa ying the access righ ts are write do wn as a

p olicies and the p olicies are assign to the roles)

� access righ ts are gran ted to users through the role groups

� role group consist of the roles or other role groups

� assigning users to the groups, group to the other groups or roles to the groups is con trolled b y

the sp ecial constrain ts whic h are de�ned b y the administrator (to prev en t a situation where t w o

excluding de�nitions are set together)

1.2.2 Soft w are requiremen ts

� all API IS soft w are is placed in the secure space on the serv er - administrator accoun t

� dev elop ers ha v e full access to the API IS �le system

� normal users ha v e access to read for the the API IS �le system

� all applications whic h cause mo di�cations in the database (f.e. batc h jobs) are restricted b y the

access righ ts

� accessing the graphical in terface, form to ols, rep ort to ols is v eri�ed b y de�ned access righ ts

1

Role Based A ccess Con trol [2],[3]

3

API IS - A ccess Contr ol System 4

1.2.3 Database requiremen ts

� database is created and con trolled b y the administrator

� users ha v e not direct access in to the database

� access righ ts to the database gran ted b y the administrator (for all users)

� creating new database and new user is allo w ed only for the administrator

� actions on the database ob jects lik e creating, altering, dro oping are rev ok ed from the users

� access righ ts are sp eci�ed for eac h table, column and the con ten t of the column (record)

� op erations on data lik e insert, up date, delete and select are v eri�ed b y the user access righ ts

� direct op erations on data lik e insert, up date, delete are not allo w ed for the user

� all mo di�cations on data carried through the administrator

� selecting data p ermitted for the user through the views created b y the administrator

1.3 The basic foundations - setting API IS soft w are

1.3.1 System arc hitecture

There are three logical mac hines in an API IS database setup:

� clien t mac hine - the mac hine at whic h users op erate

� API IS serv er - the mac hine that all users connect to

� Database serv er - the mac hine that runs the bac k end database

Clearly , all three logical mac hines can reside on one or more ph ysical computers.

The clien t mac hine is the computer from where user �re up the w eb bro wser or just connect to the API IS

Serv er via SSH proto col

2

.

The API IS Serv er tak es care of the authen tication of the users, connections to the database serv er and

presen ting data bac k to the users. Th us, to w ork directly on the API IS serv er (via SSH), user m ust ha v e

an accoun t on op erating system lev el (see section 1.4.1) and also accoun t on the API IS system lev el (see

section 1.4.2). The w ork with the w eb bro wser required only this second t yp e of accoun t.

The database serv er is the place where the database is stored. The connections in to the database are

supp orted b y the API IS Serv er. The connections to the database are distinguished on t w o groups:

mo di�cations on data and reading data. The mo di�cations are executed only through the meta_user

connection (see 1.3.3). Reading data is handled b y the direct user connection.

1.3.2 API IS core

API IS core soft w are resides on the API IS Serv er and is used b y the all users. This means that programs

are executed on the serv er and all users use the same libraries and mo dules.

De�nition of securit y for the API IS soft w are is based on the usage some secure space on the serv er and

also on the op erating system features

3

. Secure space is receiv ed b y creating a sp ecial administrator

accoun t (OS accoun t). A dministrator is the o wner of the �les and this means that he has full righ ts to

reading, writing and executing. A ccess to these �les for the other users is handled b y the sp ecial groups

(see description of Lin ux groups). Eac h �le has de�ned group to whic h b elong and a sp ecial righ ts for

this group (reading, writing and executing). In this case all �les are de�ned in the administrator group

(group is created with the administrator user accoun t). This group can b e ascrib ed to eac h op erating

system user and with this group user should ha v e righ ts only to reading. If some of the �les ha v e to b e

2

Secure Shell [4]

3

The setup describ ed here should b e full�led during soft w are installation

API IS - A ccess Contr ol System 5

fully restricted for the users (some administrator mo dules) than this can b e done b y remo ving all righ ts

from the group and from the other users. In suc h case only administrator has access to these �les.

There is also p ossibilit y to install separate cop y of API IS soft w are for eac h user. In suc h case users m ust

ha v e op erating system accoun t b ecause the soft w are is installed in his home directory .

1.3.3 API IS pro jects

All pro jects based on the API IS core ha v e separate databases. In eac h of these database w e ha v e to

create the meta_user accoun t. Then the PUBLIC sc hema has to b e remo v ed and the database m ust b e

created in the meta_user sc hema

4

whic h is created with the meta_user accoun t. In result the meta_user

has full access righ t to the database and only he can mak e direct mo di�cations on the database con ten t.

The imp ortan t thing is that the meta_user name ha v e to b e exactly the same lik e the name of the user

de�ned in the mo del_�le of particular pro ject. There is only one mo del_�le for all users registered in

the pro ject.

The general sc hema ho w the system is implemen ted is sho wn on Figure 1.1.

Figure 1.1: General sc hema for the access con trol system

1.4 De�ning users

Only registered users can w ork in the system. Eac h user can b e registered in the system on the t w o lev els:

4

Sc hema is essen tially a namespace whic h con tains named ob jects lik e tables, views whose names duplicates those of

other ob jects existing in other sc hema's (P ostgreSQL [1]).

API IS - A ccess Contr ol System 6

� op erating system lev el (not required for the eac h user),

� API IS system lev el (required for the eac h user.

1.4.1 Registering user on the op erating system lev el

This t yp e of accoun t is needed to w ork directly on the API IS Serv er and it is related only to this users,

whic h use the API IS Shell or run some batc h jobs. In suc h case user m ust ha v e an accoun t (login and

passw ord) in the op erating system of API IS Serv er.

Standard Lin ux user accoun t can b y created b y executing the follo wing command:

adduser [login] -g [login] -G [APIIS administrator group]

During creation of accoun t, the user is also assigned to the required Lin ux group (see 1.3.2).

A t the end user API IS_HOME path ha v e to b e de�ned in .bash or .pro�le �le. P ath ha v e to b e

redirected to the API IS administrator space where the soft w are is k ept (see 1.3.2).

Example:

export APIIS_HOME=/home /a pii s_ ad min is tr ato r/ de vel /a pii s

1.4.2 Registering user on the API IS system lev el

General API IS accoun t whic h is created on this lev el is required to w ork with the API IS System. On the

basis of this accoun t the access righ ts for the user are created and then c hec k ed. The data ab out user are

stored in the database (see section 1.13, �gure 1.5: AR_Users). The follo wing information ab out eac h

user is collected:

� login

� passw ord

� db_unit - foreign k ey to the unit table where the p ersonal information ab out user is stored

� coun try

� language

� mark er - the information ab out the o wnersc hip of the data

� disabled - this column is used to the lo c king of the user accoun t. The �ag of this column is alw a ys

c hec k ed during the logging pro cess and it can b e set as YES (user can not login to the system) or

NO (user can login to the system). There is also p ossibilit y to lo c k more then one user in the same

time. This can b e done b y the lo c k of the user group to whic h the users are assigned

� status, last_login, last_activ_time - these three columns are used to con trolling the user login time

and to c hec king the user curren t status (see section 1.10.1).

As an example of the user data, y ou can see T able 1.1.

API IS - A ccess Contr ol System 7

user_id login passw ord db_unit coun try language mark er

1 kloss ****** 22 German DE

2 jk o w al ****** 455 P oland P olish PL

disables status last_login last_activ_time

NO A CTIVE 2005-07-29 09:38:28 2005-07-29 11:12:45

YES INA CTIVE 2005-05-12 11:12:45 2005-05-12 12:12:45

T able 1.1: Users table

The API IS system is based on the P ostgreSQL database and to w ork with it user needs also database

accoun t. P ostgreSQL accoun t is created automatically during the creation of API IS accoun t. The login

and the passw ord are exactly the same lik e these de�ned for the API IS accoun t. This database accoun t

is needed for log-in to the system and also to giv e user the p ossibilit y of executing SQL SELECT s. These

SELECT statemen ts are executed on the views

5

whic h are created in the user sc hema on the basis of

user access righ ts. The actions lik e insert, up date, delete are e�ected b y the meta_user (1.3.3). The

meta_user is resp onsible for all mo di�cations in the database and nob o dy else can do this. When the

user executes a DML, the connection to the database is established from the meta_user. Real user name

is used to c hec k user access righ ts. Then the meta_user run all pro cesses if the user has authorisation

for this action. Real user name is sen t as a normal data for the meta �elds (last_c hange_user).

All other actions lik e creating, dropping and altering some ob jects are rev ok ed from the user (ev en after

log-in in to database from the command line). The user can not also create new users and databases.

1.5 Gran ting access righ ts to the user

The access righ ts are gran ted to the user b y the role groups. Eac h registered user should b e assigned

at least to the one group (f.e. o wn whic h is created during the registration pro cess). The informa-

tion ab out groups assigned to the users is stored in the database table (see section 1.13, �gure 1.5:

AR_User_Groups):

user_id group_id

1 1

1 3

T able 1.2: Relations b eet w en users and groups

group_id is a foreign k ey to the group's table where the group de�nitions are stored (see section 1.13,

�gure 1.5: AR_Groups table).

group_id group_name group_t yp e group_con ten t group_desc

1 system_task_administrator st_group Roles description

2 database_administrator dbt_group Roles description

3 breeder dbt_group Groups description

T able 1.3: Groups

The user is allo cated for the group b y the administrator. If the administrator w an ts to add the user

to the group, �rst he has to c hec k that the user can b e really assigned to this group - c hec king that

the group can co op erate with the groups whic h are curren tly de�ned for this user. This pro cess is done

5

The view is, in essence, a virtual table. It do es not ph ysically exist. Rather, it is created b y a query joining one or

more tables.

API IS - A ccess Contr ol System 8

automatically on the basis of the group constrain ts. The group constrain ts qualify whic h groups can not

b e used in the same time b y the one user. They are stored in the separate table in the database (see

section 1.13, �gure 1.8: AR_Group_Constrain ts).

group_cons_id group1_id group2_id group_cons_t yp e

1 2 3 user-group-cons

2 6 4 user-group-cons

T able 1.4: Group constrain ts

The �elds group1_id and group2_id in the table are foreign k eys to the table groups (T able 1.3). The

algorithm, whic h v ery�es the groups, tak es from the user the curren t list of his groups (from table 1.2).

The v alues from the list are set together one b y one with the id of the new group whic h w e w an t to add.

Eac h couple of v alues is used as a condition for the WHERE clause in the follo wing SQL statemen t:

SELECT gr oup_c ons_id FR OM ar_gr oup_c onstr aints WHERE

((gr oup1_c ons_id=' user_de�ne d_gr oup ' and gr oup2_c ons_id=' new_gr oup ') or

(gr oup1_c ons_id=' new_gr oup ' and gr oup2_c ons_id=' user_de�ne d_gr oup ')) and

(group_cons_t yp e=' user-group-cons ')

F or eac h couple of groups one SELECT is executed. When all com bination of groups are p ositiv ely

v eri�ed (no results for eac h com bination) then the user can b e appraised to the group. If there is a result

then this means that the constrain ts are de�ned for this com bination and the new role group can not

b e added to the curren t set of groups de�ned for the user. The algorithm is not sto op ed in this p oin t

and it just go through the all com binations. All results are collected and then they are sho w ed to the

administrator. The administrator has clear picture whic h groups are in the con�ict with the new group.

The constrain ts for the groups are optional and it should b e de�ned only if they are needful (the decision

sta y with the administrator). In the section 1.9 y ou can read ho w the constrain ts are de�ned.

1.6 A ccess righ ts for the system tasks

1.6.1 De�nitions of the access righ ts

This access con trol de�nition is designed for the scripts, forms, rep orts, in terface, subroutines and all

other actions whic h are executed on the basis of API IS soft w are (I called these action as a system tasks).

The administrator of the system has to b e sure that the user runs only these tasks whic h are allo w ed

for him. This means that ev ery user has to ha v e de�ned access righ ts for the eac h system task. The

de�nition of the access righ ts is based on the roles - roles based system (RBA C

6

). In this t yp e of system

eac h role is a de�nition of the group of the access righ ts. In the roles, the access righ ts are de�ned via

p olicies. In our case eac h p olicy de�nes access to one system task. All roles are group ed and they are

assigned to the user groups. The whole structure of access con trol for the system tasks is de�ned in the

follo wing manner: the p olicies are ascrib ed to the one or more roles, the roles are ascrib ed to the one or

more role groups, the role groups are ascrib ed to the one or more user or to the next role groups.

The information ab out access righ ts needed to con trol system tasks is stored in the three follo wing tables

(see section 1.13, �gure 1.7):

� roles table (AR_Roles) - this table stores information ab out roles. The role de�nition is a set of role

name and the role t yp e where the role t yp e can b e de�ned as ST (System T ask) or DBT (Database

T ask). In this case the role should b e de�ned as a ST.

6

Role Based A ccess Con trol [2],[3]

API IS - A ccess Contr ol System 9

role_id role_name role_t yp e

1 sys_admin_role ST

2 public_role ST

3 db_admin_role DBT

T able 1.5: Roles table

� system task p olicies table (AR_StP olicies) - this table stores information ab out system tasks. Eac h

system task consist of the name and the category . The category of the system task can b e de�ned

as: program, www, form, rep ort, action.

stp olicy_id stp olicy_name stp olicy_t yp e

1 runall_ar.pl program

2 en ter data www

3 add new user action

4 Num b er of animals in y ear 2004 rep ort

T able 1.6: P olicies for the system tasks

� link table (AR_Role_StP olicies) - it joins roles with the p olicies together.

1.6.2 Chec king of the access righ ts - logging to the system

There are t w o w a ys to w ork with the API IS system:

� directly on the API IS serv er (API IS Shell, batc h jobs)

� through the w eb bro wser (WWW service).

If user w an ts to w ork directly on the API IS serv er �rst he has to connect via ssh to the serv er (OS

login and passw ord - see section 1.4.1). After log-in to the serv er, sp ecial API IS Shell is activ ated for

the user. In the API IS Shell user has to c ho ose a pro ject name (to whic h he w an t to login) and en ters

his API IS login and the passw ord (see section 1.4.2). If the data are consisten t then the meta_user has

to c hec k the user access righ ts for the system task. The meta_user log-in to the database (the in ternal

system connection) and c hec ks whic h tasks user can execute. The result of this c hec king are returned as

a list of the allo w ed jobs. This list is loaded in to the API IS Shell. Finally user has only these actions in

the Shell to whic h he is in the righ t. The sym b olic sc hema is sho wn on Figure 1.2.

There are users whic h can ha v e p ossibilit y to run batc h jobs from the command line. In suc h case after

log-in to the API IS Serv er via ssh API IS Shell is not activ ated automatically . The pro cedure of c hec king

access righ ts for the programs whic h are run directly from the command line is exactly the same lik e

during log-in via API IS Shell. Di�erence here is that the meta_user c hec ks access righ t only for the

curren tly executed task.

Second v arian t to w ork with the API IS is the w eb bro wser. Here instead of connection to the serv er user

has to sp ecify in his w eb bro wser the correct address to the API IS in ternet page. Login pro cedure is

exactly the same lik e for the API IS Shell.

API IS - A ccess Contr ol System 10

Figure 1.2: Logging to the API IS system (red �elds are not allo w ed)

1.7 A ccess righ ts for the database and the con ten t of the database

This access con trol de�nition is designed for all action related to the database (database tasks). W e de�ne

t w o di�eren t metho ds for c hec king access righ ts on the database lev el. The c hoice of whic h, dep ends on

t yp e of the SQL Statemen t. One applies only to the insert, up date and delete statemen ts while another is

used for the sele ct statemen ts. The t yp e of the SQL Statemen t is recognised on the b eginning and then

the relev an t metho d is launc hed.

1.7.1 Metho d for the insert, up date and delete statemen ts

This route is esp ecially for the insert, up date, delete statemen ts and can b e describ ed b y the follo wing

steps:

1. All actions go through the meta_la y er where the action is c hec k ed for the user

2. The argumen ts in the action (table/columns) are matc hed with the access righ ts de�ned for this

user,

3. If the user do esn't ha v e required access righ ts for the table/columns set the action is ab orted, else

access the record is c hec k ed in the next p oin t.

4. Algorithm c hec ks if the statemen ts will b e executed on the set of data whic h are allo w ed for the

user. If DML touc hes the record whic h is out of user area then the action is cancelled.

1.7.1.1 De�nition of the access righ ts

De�nition of the access righ ts for the database tasks is based on the same structure lik e the de�nition

of system tasks (1.6.1). In this case access righ ts are also ordered b y the roles where the role de�nes

access righ ts to the group of tables, columns, records. The roles are assigned to the role groups. Eac h

role consists of one or more p olicy . The p olicy consists of action (INSER T/UPD A TE/DELETE), table

name, column names for this table and the descriptor, where the descriptor sp eci�es the sets of data on

whic h user can op erate. The information ab out access righ ts for the database tasks is also stored in the

database (see section 1.13, �gure 1.6). In this case the same roles table whic h w as de�ned for the system

tasks is used (T able 1.5). The di�erence is only in the role t yp e de�nition b ecause here the role is de�ned

as a DBT (Database T ask). Besides, there are three additional tables and the view:

API IS - A ccess Contr ol System 11

� tables (AR_DbtT ables) - k eeps information ab out the tables de�ned in the mo del�le and their

columns.

table_id table_name table_columns

1 breeds breed_id|coun try_id|lean_meat_a vg

2 breeds breed_id|tax_id|mcname

3 breeds breed_id|lang_id|in tname

4 animal db_animal|birth_dt|db_sex|name

5 breeds breed_id|mcname|coun try_id|tax_id

6 breeds breed_id|mcname

7 breeds breed_id|mcname|tax_id|dailygain

8 breeds -

9 animal -

T able 1.7: T ables

� descriptor (AR_DbtDescriptors) - table holds the de�nitions of �lters for the reords. Descriptor

can b e de�ned as an y column from the database. Eac h descriptor consist of the column name and

the v alue for this column, where this last can b e de�ned as a single v alue, list or range (range can

b e de�ned only for the n umerical v alues). In case of list, there is a limitation related to the n um b er

of elemen ts. If the list has more then 2000 elemen ts then the sp ecial view in the user sc hema is

created whic h will return v alues for this list. The name of this view is put in to the descriptor

de�nition.

If the descriptor is based on the foreign k ey than the in teranal represen tation of foreign k ey n um b ers

is used as a v alues.

descriptor_id descriptor_name descriptor_v alue

1 lean_meat_a vg 60-74

2 tax_id 5,6,7

3 o wner PL

4 db_animal 1-50

5 db_sex 72

6 lean_meat_a vg 60-74

7 tax_id 5,6,7

8 o wner DE

9 db_animal 1-10

10 db_sex 72

11 tax_id 1,2

12 carcassw eigh t 300-400

13 o wner PL,DE,FR,IT, ...

13 o wner PL,DE

14 o wner FR

15 tax_id 3

16 dailygain 24-56

17 NOT tax_id 1,2,3

T able 1.8: Descriptors

API IS - A ccess Contr ol System 12

� database task p olicies - this table stores p olicy de�nitions whic h are a joins of records from tables:

descriptor, table and co des. T able co des stores the SQL action names (1-INSER T, 2-UPD A TE,

3-DELETE, 4-SELECT). The imp ortan t thing is that the descriptor has to b e alw a ys sp eci�ed as

a column of table whic h is used in the p olicy de�nition.

p olicy_id action_id table_id descriptor_id

1 1 1 1

2 1 2 2

3 1 3 3

4 1 4 4

5 1 4 5

6 2 1 1

7 2 2 2

8 2 3 3

9 2 4 4

10 2 4 5

11 3 8 2

12 3 9 4

13 4 5 11

14 4 5 12

15 4 5 13

16 4 6 14

17 4 6 15

18 4 7 16

19 4 7 17

20 4 8 4

21 4 8 5

T able 1.9: Database task p olicies table

� user access view - the view is created in the user sc hema and k eeps individual access righ ts of the

user. The name of the view is deriv ed from the user name.

API IS - A ccess Contr ol System 13

action tablename columnames descriptor_name descriptor_v alue

insert breeds breed_id|coun try_id|lean_meat_a vg lean_meat_a vg 60-74

insert breeds breed_id|tax_id|mcname tax_id 5,6,7

insert breeds breed_id|lang_id|in tname o wner PL

insert animal db_animal|birth_dt|db_sex|name db_animal 1-10

insert animal db_animal|birth_dt|db_sex|name db_sex 72

up date breeds breed_id|coun try_id|lean_meat_a vg lean_meat_a vg 60-74

up date breeds breed_id|tax_id|mcname tax_id 5,6,7

up date breeds breed_id|lang_id|in tname o wner PL

up date animal db_animal|birth_dt|db_sex|name db_animal 1-10

up date animal db_animal|birth_dt|db_sex|name db_sex 72

delete breeds - tax_id 5,6,7

delete breeds - db_animal 1-50

select breeds breed_id|mcname|coun try_id|tax_id tax_id 1,2

select breeds breed_id|mcname|coun try_id|tax_id carcassw eigh t 300-400

select breeds breed_id|mcname|coun try_id|tax_id o wner PL,DE

select breeds breed_id|mcname o wner FR

select breeds breed_id|mcname tax_id 3

select breeds breed_id|mcname|tax_id|dailygain dailygain 24-56

select breeds breed_id|mcname|tax_id|dailygain NOT tax_id 1,2,3

select animal db_animal|birth_dt|db_sex|name db_animal 1-50

select animal db_animal|birth_dt|db_sex|name db_sex 72

T able 1.10: User access righ ts view

1.7.1.2 Chec king of the access righ ts

The pro cedure of c hec king access righ ts is executed for eac h SQL statemen t separately . Eac h SQL state-

men t (from LO, forms, in terface or other program), excluding SELECT, is parsed and the results are put

in to the sp ecial structure (record ob ject). The information ab out SQL statemen t needed for the c hec king

of access righ ts is tak en from this structure.

1.7.1.2.1 Chec king insert statemen t

1. Getting the action name, table name and the column names from the SQL statemen t whic h user

w an t to execute. This information is tak en from the record ob ject.

2. V erifying user access righ ts for the action and the table.

Sp ecial �SELECT� statemen t is executed on the user access righ ts view. The action name and the

table name (receiv ed in step 1) are used as a argumen ts in the WHERE clause. It returns allo w ed

column names and descriptors for de�ned table and action.

If there is some result from the SELECT statemen t then the access righ ts are v alid for the action

and the table and w e can go to step 3. If there is no result (no record returned) user is not allo w ed

to execute his SQL query and the algorithm is stopp ed.

3. V erifying user access righ ts for the columns.

Set of column from user SQL is matc hed with the sets of columns whic h are de�ned in the p olicies.

If the algorithm �nds the de�nition whic h is iden tical (or if the p olicy de�nition con tain all column

from user SQL) then the descriptor of this p olicy is collected (the order of column can b e di�eren t

but the names ha v e to b e the same). Algorithm go es through the all records returned in step 2

and accum ulates all descriptors. Error message (no access righ ts) is generated in case if there is no

applicable column de�nitions in the user righ ts.

4. V erifying user access righ ts for the record .

No w w e ha v e to pro v e all descriptors returned in the previous step. The v alue of eac h descriptor

API IS - A ccess Contr ol System 14

is set together with the v alue of the corresp onding column from the user SQL

7

. If the v alue from

user SQL is in the righ t with the descriptor v alue then the next pair of v alue is c hec k ed. If there

is no compatibilit y for some pair of v alue then the error message is prin ted and action is stopp ed.

The pro cess of access righ ts c hec king is �nished successfully if data in tro duced b y the insert are

con tained in the user limitations.

Examples:

(1) INSERT INTO breeds(breed_id, cou nt ry _id ,l ea n_m ea t_a vg)

VALUE (50000055,500000 00 1, 68) ;

(2) INSERT INTO breeds(breed_id, cou nt ry _id ,l ea n_m ea t_a vg)

VALUE (50000055,500000 00 1, 45) ;

(3) INSERT INTO breeds(breed_id, tax _i d)

VALUE (50000055,6);

(4) INSERT INTO breeds(breed_id, cou nt ry _id ,t ax _id ,l ean _m ea t_a vg)

VALUE (50000055,500000 00 1, 7,4 5) ;

(5) INSERT INTO breeds(breed_id, lan g_ id ,in tn am e)

VALUE (50000055,300000 00 1, 'na me ') ;

If w e lo ok at our view (T able 1.10) then: - the �rst insert can b e executed b y the user b ecause the

lean_meat_a vg is 68 and allo w ed range is 60-74

- the second insert can not b e executed b ecause lean_meat_a vg is out of de�ned range

- the third insert can b e executed

- the forth insert can not b e executed b ecause there is no suc h set of column de�nitions in an y p olicy .

- the �fth insert can b e executed if the o wner name whic h will b e inserted to the record is de�ned as PL

(the o wner is a sp ecial case whic h is existing only in EF ABIS pro ject and it is tak en from the user table).

1.7.1.2.2 Chec king up date statemen t The pro cedure of c hec king access righ ts for up date is ex-

actly the same lik e this de�ned for the insert. The di�erences are only in steps 2 and 4. In step 2, the

parameter action for the WHERE caluse is de�ned as UPD A TE. In step 4 descriptors are compared with

the v alues of record whic h will b e up dated b y the user (in the INSER T they are compared with the v alues

whic h are in tro duced b y the user).

Examples:

(1) UPDATE breeds SET breed_id='50000 04 5', mc na me= 'n ew mcname'

WHERE breed_id=444446;

(2) UPDATE animal SET birth_dt='2000- 09 -02 ', db_sex=73

WHERE db_animal=444556 ;

(3) UPDATE animal SET birth_dt='2000- 09 -02 ', name='some name'

WHERE db_animal>1 and db_animal<10 and db_sex=73;

In our examples the �rst up date can b e executed if the tax_id of existing record is de�ned as 5 or 6

or 7. The second up date can not b e executed b ecause db_animal is out of the range. The third record

can b e also not executed b ecause action is allo w ed only for the records where db_sex has 72 v alue (in

this case db_animal is correct).

1.7.1.2.3 Chec king delete statemen t In case of DELETE statemen t the algorithm w orks the same

lik e for UPD A TE with exclusion of step 3 (DELETE statemen t is executed on the whole record and the

columns are not c hec k ed).

The sym b olic sc hema of mo difying database con ten t is sho wn on the Figure 1.3.

All mo difying query (insert,up date,delete) are managed b y the metauser (see ??).

7

if the descriptor v alue is de�ned as a list or range then the v alue from user SQL is searc hed on the list or it is collated

with the range; in case of view the select statemen t is executed to v eri�ed this v alue.

API IS - A ccess Contr ol System 15

Figure 1.3: Mo difying the database con ten t

1.7.2 Metho d for the public select statemen ts

A ccess righ ts for the public SELECT statemen ts follo w a di�eren t route from the metho d whic h w as

describ ed in the previous section. This route is di�eren t, b ecause the parsing of a complex SELECT

statemen t (placing elemen ts of the SQL query in to the record ob ject) is to o complicated. In this case

SELECT statemen ts are not handled b y the meta_user but b y the real user with his direct database

connection. They are executed on the views lo cated in the user sc hema. User can access only these views

whic h are created in his sc hema. Eac h view con tains only those ro ws and columns that the user is allo w ed

to access (on the basis of his access righ ts).

1.7.2.1 De�nition of the access righ ts:

A ccess righ ts for the selecting data are de�ned in the same w a y lik e w ere de�ned for up date, insert and

delete (see 1.7.1).

action tablename columnames descriptor_name descriptor_v alue

select breeds breed_id|mcname|coun try_id|tax_id tax_id 1,2

select breeds breed_id|mcname|coun try_id|tax_id carcassw eigh t 300-400

select breeds breed_id|mcname|coun try_id|tax_id o wner PL,DE

select breeds breed_id|mcname o wner FR

select breeds breed_id|mcname tax_id 3

select breeds breed_id|mcname|tax_id|dailygain dailygain 24-56

select breeds breed_id|mcname|tax_id|dailygain NOT tax_id 1,2,3

select animal db_animal|birth_dt|db_sex|name db_animal 1-50

select animal db_animal|birth_dt|db_sex|name db_sex 72

T able 1.11: The same user access righ ts view

1.7.2.2 Creating views:

Eac h user view is created separately . Alw a ys for eac h table one view is created. A t the b eginning list of

all allo w ed table names is tak en from the user access righ ts view (only these table names on whic h user

can execute SELECT statemen t).

API IS - A ccess Contr ol System 16

Then the follo wing steps ha v e to b e accomplished to create view for eac h table from the list:

1. Creating list of basic columns for the view.

The algorithm tak es from the user access view all column names for the table whic h is curren tly

treated. The column names are tak en from the eac h p olicy de�nition and then they are merged

together in to the one list (duplicates of columns are remo v ed). This list is needed to create basic

view structure.

2. Creating basic SQL statemen t needed to pro duce view.

This �rst part of the SQL statemen t is de�ned on the basis of the columns whic h w e got in the

previous step.

CREA TE VIEW user_schema.tr e ate d_table AS SELECT list of b asic c olumns FR OM

meta_user_schema.tr e ate d_table WHERE oid=NULL

The �where clause� is needed here to create empt y view structure. No w w e ha v e to add the �ltration

for the columns and the records according to the descriptor de�nitions.

3. De�ning �ltering extensions for the basic SQL statemen t.

The records are �ltered b y the additionall SELECT statemen ts whic h ha v e to b e de�ned separately

for the eac h unique set of columns. SELECTS are created one b y one and for eac h of them the

follo wing actions are e�ected:

� A t �rst the column for the SELECT are prepared. T reated set of columns is compared to the

basic list from step 1. If some column is missing in the treated set then NULL expresion is

placed instead of column. The order of column for this query has to b e exactly the same lik e

the order of basic column.

� When the columns are ready then the WHERE clause is �xed. Th us all descriptors assigned

for considered collection of columns ha v e to b e included. Eac h of the descriptors is joined

to the WHERE clause b y the AND op erator. If descriptor has more than one v alue de�ned

then the one condition from these v alues is created. In this case v alue are link b y the OR

op erator

8

and then they are added to the WHERE clause. It can b e also that the v alue of

descriptor is related to the view and then the information are tak en b y the additional sub query

(construction: descriptor IN (SELECT)).

If descriptor name is de�ned with the NOT pre�x, the NOT expression is added to the WHERE

b efore this elemen t

9

.

� The complete SELECT is added to the basic SQL statemen t (from step 2) b y the UNION

expression. After this the next set of columns is tak en in to the pro cess.

� After last SELECT �nall SQL is executed and the view for the table is created.

Example:

CREATE VIEW user_schema.bree ds as

SELECT breed_id, mcname, country_id, tax_id, dailygain FROM breeds

UNION

SELECT breed_id, mcname, country_id, tax_id, NULL FROM breeds

WHERE (tax_id=1 or tax_id=2)

and (carcassweight>= 30 0 and carcassweight<= 400)

and (owner='PL' or owner='DE')

UNION

SELECT breed_id, mcname, NULL, NULL, NULL FROM breeds

WHERE (owner='FR') and (tax_id=3)

UNION

8

This is true only if w e ha v e a list of v alue, in case of the range v alues are merged b y AND op erator

9

NOT expression can help prev en t views b efore duplicated records

API IS - A ccess Contr ol System 17

SELECT breed_id, mcname, NULL, tax_id, dailygain FROM breeds

WHERE (dailygain>=24 and dailygain<=56) and not((tax_id=1 and so on ...);

In result w e get a follo wing view:

breed_id mcname coun try_id tax_id dailygain

33 P olish Red 50000091 1 NULL

45 Angler 50000009 1 NULL

67 W ollsc h w ein 50000009 2 NULL

56 Pula wsk a 50000091 2 NULL

23 Duc k de la F rance NULL NULL NULL

78 Lank a NULL 5 350

24 Florina NULL 6 315

T able 1.12: View for the breeds table

The sym b olic sc hema of reading data is sho wn on Figure 1.4.

Figure 1.4: Reading data from the database

1.8 Grouping access righ ts

All access righ ts in the system are gran ted to the user b y the groups. The group is a bunc h of access

righ ts whic h can b e assigned to the one or more user. Eac h group can b e structured from roles or other

groups. The imp ortan t thing is that this t w o elemen ts can not b e mixed in the one group. The main role

group de�nitions are k ept in the database table (AR_Groups)

10

.

10

The table w as already presen ted in the section 1.5

API IS - A ccess Contr ol System 18

group_id group_name group_t yp e group_con ten t group_desc

1 system_task_administrator st_group Roles description

2 database_administrator dbt_group Roles description

3 breeder dbt_group Groups description

T able 1.13: Groups

1.8.1 Grouping roles

Eac h role is allo cated at list in the one group. The relations b eet w en the the roles and role groups are

k ept in the separate table (AR_Role_Groups). The role is allo cated for the group b y the administrator.

If w e w an t to add the role to some group, �rst w e ha v e to c hec k the group t yp e (the t yp e of the role has

to b e the same t yp e lik e the t yp e of the group) and the group con ten t (role can b e added to the group

whic h con tains roles de�nition - not other groups). If these t w o requiremen ts are agreed then w e ha v e

to in v estigate that the new role can co op erate with the other roles whic h are curren tly de�ned in this

group. This pro cess is done automatically on the basis of the role constrain ts de�ned for the roles. These

constrain ts qualify whic h roles can not b e used in the same time in the one role group. The constrain ts

for the roles are stored in the di�eren t table (see section 1.13, �gure 1.8): AR_Role_Constrain ts) than

the constrain ts for the groups (see section 1.13, �gure 1.8): AR_Group_Constrain ts).

role_cons_id role1_cons_id role2_cons_id

1 1 2

T able 1.14: Constrain ts for the roles

The �elds role1_id and role2_id are foreign k eys to the roles table (AR_Roles table). The algorithm,

whic h v ery�es the roles, tak es from the group (to whic h w e w an t to add the role) the curren t list of its

roles. The v alues from the list are set together one b y one with the id of the new role. Eac h couple of

v alues is used as a condition for the WHERE clause in the follo wing SQL statemen t:

SELECT r ole_c ons_id FR OM ar_r ole_c onstr aints WHERE (r ole1_c ons_id=' existing_r ole ' and

r ole2_c ons_id=' new_r ole ') or (r ole1_c ons_id=' new_r ole ' and r ole2_c ons_id=' existing_r ole ')

F or eac h couple of roles one SELECT is executed. When all com bination of roles are p ositiv ely v eri�ed

(no results for eac h com bination) then the role can b e appraised to the group. If there is a result for

some union then this means that there are some constrain ts and role can not b e added to the group.

The algorithm is not sto op ed in this p oin t and it just go through the all com binations. All results are

collected and then they are sho w ed to the administrator. The administrator has clear picture whic h roles

are in the con�ict with the new role.

1.8.2 Grouping groups

The groups can b e also assigned to the other groups. This can b e done only if the con ten t of the group

to whic h w e w an t to add new group is de�ned as "Groups" and the t yp es of the groups are the same.

The relations b eet w en the groups are k ept in the separate database table (see section 1.13, �gure 1.5):

AR_Group_Groups) where w e de�ne the group_id from higher lev el (paren t) and group_id from lo w er

lev el (c hild). In this table the unique k ey is de�ned on b oth of the columns. The imp ortan t rules are

that the group can not b e ascended to itself and also that there is no p ossibilit y to create the same

com bination of groups but with di�eren t order of columns (the group ids c hanged b eet w en the columns).

If w e w an t to add the group to the other group, w e ha v e to b e in righ t with the condition presen ted

ab o v e. Then w e ha v e to c hec k the group constrain ts (c hec king that the new c hild group can co op erate

with the other already de�ned c hild groups). This constrain ts are stored in the same table where the

constrain ts for the assigning user to the groups are de�ned (AR_Group_Constrain ts - T able 1.4). The

di�erence is only in the relation t yp e, her it is de�ned as "group-group".

API IS - A ccess Contr ol System 19

In this case the algorithm tak es from the paren t group the curren t list of its c hild groups. The existing

c hildren are set together one b y one with the new c hild. Eac h couple of v alues is used as a condition for

the WHERE clause in the follo wing SQL statemen t:

SELECT gr oup_c ons_id FR OM ar_gr oup_c onstr aints WHERE

((gr oup1_c ons_id=' existing_child_gr oup ' and gr oup2_c ons_id=' new_child_gr oup ') or

(gr oup1_c ons_id=' new_child_gr oup ' and gr oup2_c ons_id=' existing_child_gr oup ')) and

(group_cons_t yp e=' group-group-cons ')

F or eac h couple of role v alues one SELECT is executed. When all com bination are p ositiv ely v eri�ed

(no results for eac h com bination) then new c hild group can b e appraised to the paren t group. If there

is a result for some union then this means that some constrain ts are de�ned and new group can not b e

added. The algorithm is not sto op ed in this p oin t and it just go through the all com binations. All results

are collected and then they are sho w ed to the administrator. The administrator has clear picture whic h

existing groups are in the con�ict with the new c hild group.

1.9 Sp ecifying constrain ts for the grouping

In the previous sections w e sp eci�ed the three t yp es of constrain ts whic h are use in the grouping:

1. user-groups-constrain ts - c hec king if the user can b e ascrib ed to the new group with his curren t

aggregation of groups

2. group-groups-constrain ts - c hec king if the group can b e de�ned as a part of other group.

3. role-constrain ts - c hec king if the role can b e added to the group

The manner of adding new constrain ts for eac h of this category is v ery similar. A t the b eginning w e

ha v e to c hec k that the new constrain ts will b e v alid for the curren t de�nitions allo cated for the user and

groups (f.e. one of the user is assigned to t w o groups whic h w e w an t to exclude). Th us the one of the

follo wing statemen ts ha v e to b e executed:

SELECT user_id FR OM ar_user_gr oups WHERE gr oup_id=' �rst gr oup id ' or gr oup_id=' se c ond

gr oup id

This SELECT is executed for the �rst t yp e of constrain ts. In the WHERE clause w e put these group ids

for whic h the new constrain t will b e de�ned. As a result w e get a users whic h are attributed for these

groups.

SELECT hl_gr oup_id FR OM ar_gr oup_gr oups WHERE l l_gr oup_id=' �rst gr oup id ' or

l l_gr oup_id=' se c ond gr oup id

The SELECT is executed for second t yp e of constrain ts. In the WHERE clause w e put these group ids

for whic h w e w an t to de�ne new constrain t. SELECT returns these paren t groups whic h ha v e suc h c hild

groups de�ned.

SELECT gr oup_id FR OM ar_r ole_gr oups WHERE r ole_id=' �rst r ole id ' or r ole_id=' se c ond r ole

id

The last SELECT is executed for the third t yp e of constrain ts. In the WHERE w e put the role_id for

whic h w e w an t to de�ne new constrain t. Returned results giv e the information ab out groups to whic h

these roles are assigned.

After this when the SELECT is executed, the algorithm c hec ks if there are an y duplicates in the

returned results (t w o the same user, t w o the same groups). If the duplicates are presen ted for one of this

SELECT then they are returned as an one con�icts list. In suc h case the new constrain ts can not b e

added b ecause it causes a con tradiction in the curren t de�nitions. The administrator �rst has to c hange

these con�ict de�nitions and then this constrain ts can b e in tro duced.

API IS - A ccess Contr ol System 20

1.10 F urther dev eloping

1.10.1 Chec king the login time and the curren t status of the users

The metho d of c hec king the login time for the user is needed to prev en t system b efore unclosed session.

There are three columns in the users table whic h are used b y this metho d: session_status column whic h

is �ll in during the logging (the �ag of this column is set as A CTIVE), last_login column whic h is �ll in

b y the logging timestamp and last_activ_time column whic h is up dated during the user session. The

last column is up dated b y the actual timestamp ev erytime when the user executes some action on the

database. In the same time algorithm c hec ks also the activ ation time for the all others users and compares

it with the actual time. If the di�erence for some user is greater then de�ned timeout then the user session

is closed. The timeout should b e de�ned as a global v alue in the con�guration �le.

1.11 Remarks

Implemen tation of the Securit y System is made in the P erl Programming Language.

1.12 Bibliograph y

[1] http://www.postgr es ql .or g/ do cs/ 7. 4/ sta ti c/ sql -c rea te sc hem a. ht ml

[2] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn,

Ramaswamy Chandramouli,

Proposed NIST Standard for Role-Based Access Control, (ACM, 2001)

[3] http://csrc.nist. go v/ rba c/

[4] http://en.wikiped ia .o rg/ wi ki /SS H

1.13 ERD diagrams

API IS - A ccess Contr ol System 21

Figure 1.5: Users-Groups-Roles

API IS - A ccess Contr ol System 22

Figure 1.6: A ccess righ ts for the database tasks

API IS - A ccess Contr ol System 23

Figure 1.7: A ccess righ ts for the system tasks

API IS - A ccess Contr ol System 24

Figure 1.8: Constrain ts

